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Abstract—Backdoor attacks have become a security threat to
deep neural networks (DNNs), in which an attacker embeds
a secret behavior into a DNN by poisoning a few training
data. To address the backdoor threat, some defense strategies
employ outlier detection algorithms to identify poisoned samples
in hidden representation space. However, these defenses remain
vulnerable to adaptive attacks as their representation separability
assumption could be broken. In this paper, we aim to boost
existing defenses by leveraging insights from the label smoothing
technique, demonstrating its effectiveness in distinguishing poison
from benign samples. Our analysis uncovers the role of label
smoothing as a regularization technique that enhances hidden
class separability in the penultimate layer of a model. Building on
the label smoothing, we introduce Learning Speed-driven Label
Smoothing (LS2): a simple yet novel approach that assigns an
adaptive smoothing rate based on the model’s “learning speed”
for each sample. Extensive results show that LS2 can bolster the
discernibility between poison and benign samples, enhancing the
efficacy of defenses relying on hidden separability. Incorporated
with LS2, existing hidden-separation-based defenses achieve state-
of-the-art poison sample removal rates (Prm) against adaptive
attacks. Code is available at https://github.com/JiePeng104/LS2.

Index Terms—Deep Neural Networks, AI Security, Backdoor
Defenses, Label Smoothing

I. INTRODUCTION

AS deep learning algorithms demand substantial training
data, it’s a common practice to gather training data from

various sources. However, such practice opens up opportunities
for attackers to manipulate the behavior of a system by
inserting poisoned instances into the training data. One of the
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Fig. 1. Adaptive backdoor attacks can easily bypass defenses based on
hidden separation (i.e., robust filter), as the underlying assumption of hidden
separability is compromised. In this work, we show that the hidden separability
can be largely boosted when training the model with our LS2 instead of the
standard approach. Thus, such separability enables the corresponding defense
to successfully remove poison samples from various attacks.

most potent forms of poisoning attacks is the backdoor attack,
in which the adversary embeds a backdoor into the model,
enforcing the model to change its prediction when a trigger
is present [1]. Detecting such attacks is challenging because
the model’s behavior remains unchanged on clean inputs.
Moreover, Carlini et al. [2] recently showed that modifying
a small fraction of web-scale datasets is sufficient to implant
a backdoor into the victim model.

To mitigate the risk of backdoor poisoning attacks, some
defenses have tried to remove the implanted backdoor by
repairing the model with a few clean instances [3]–[5], while
others have sought to detect and filter out the adversarially
crafted training data by unique characteristics during the train-
ing stage [6]–[8]. Based on the observation that representations
at hidden layers of poisoned and benign are separable, a line
of defenses has succeeded in defending against a range of
backdoor attacks by discarding the malicious samples [6], [9],
[10]. These defense strategies follow a common approach to
train a DNN on the malicious dataset. After that, they extract
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the representations in hidden layers from the polluted model
and perform variants of the outlier detection algorithm to
identify poisoned samples. As a part of these defenses being
developed from robust estimation, they come with probabilistic
guarantees for correctly identifying a sufficient number of poi-
soned samples. Despite the effectiveness of hidden-separation-
based defenses, they are facing new challenges from adaptive
attacks [11]. In the context of adaptive attacks, an attacker
can create poisoned samples with careful design to break
the fundamental assumption of hidden separability, ultimately
evading these defenses. Besides, as previously discussed by
Hayase et al. [10], some of these defenses may fail to
remove the poisoned samples when there is a small number
of poisoned data.

The key insight of our work is to address the above
challenges by first connecting label smoothing to existing
hidden-separation-based defenses. We leverage the effect of
label smoothing in increasing class separation [12], [13] to
boost the latent separability between benign and poison data,
thus making the representations conform to the assumption
of hidden-separation-based defenses. Specifically, to better
understand how label smoothing enhances representations, we
explore its role as a regularization technique for improving
class separation in the penultimate layer. Our analysis reveals
the implicit impact of label smoothing on hidden represen-
tations. We also find the fundamental differences in area
under the margin (AUM) [14] values between poison and
benign samples, where AUM is an metric to assess whether
the model quickly learns a sample. Unlike benign samples,
various poisoned samples either exhibit an “easy-to-learn” or
“hard-to-learn” behavior. Building upon these findings, we
devised a novel learning strategy, Learning Speed-driven Label
Smoothing (LS2), to separate poison and benign samples in
latent spaces. Instead of setting a fixed smoothing rate, we
adjust the smoothing rate of each sample depending on how
“quickly” the model learns them. We show that LS2 can
enhance the performance of hidden-separation-based defenses,
including Activation Clustering (AC), Spectral Signature (SS),
SCAn and SPECTRE (shown in Fig. 1). Overall, our main
contributions are:

• We propose a simple yet novel learning strategy, Learning
Speed-driven Label Smoothing (LS2), to intensify the
separation between poisoned and benign samples.

• To shed light on how label smoothing boosts hidden
separability, we reform it as a regularization term and
demonstrate its implicit impact on class separation in the
penultimate layer.

• We also identify the fundamental disparities in AUM
values between poisoned and benign samples. Based on
such a characteristic, LS2 successfully separates poison
samples from clean ones, even when against adaptive
attacks or attacks with only a small number of poisoned
data.

• Extensive experiments demonstrate that existing hidden-
separation-based defenses, with LS2, achieve an average
improvement of 48.67% on CIFAR10 and 55.68% on
GTSRB in Prm against adaptive attacks. We also show

that the combination of LS2 and SPECTRE is robust to
8 state-of-the-art backdoor attacks.

II. RELATED WORK

A. Backdoor Attacks

The objective of a backdoor adversary is to make the
victim model (DNN) capable of accurately predicting the
ground-truth labels for clean inputs while assigning a specific
target label to inputs embedded with the trigger [1], [15]. To
achieve the attack goal, a backdoor attacker usually poisons a
portion of the training set by injecting a pre-designed trigger
and relabeling them as the target labels. The trigger patterns
can be simple pixel squares, real-world objects like a plant
[16], or even be invisible patterns [17]–[20]. As mislabeled
input–label samples would be easily detected as outliers,
some studies have explored methods for performing backdoor
attacks without flipping the labels of poisoned samples [21]–
[24].

To evade the hidden-separation-based backdoor defenses,
a series of backdoor attacks have attempted to reduce the
hidden separation between benign and poisoned samples by
optimizing the victim model [25], [26]. However, this type of
attack violates the fundamental threat model of a backdoor
poisoning attack, where the attacker should only have access
to the training data rather than being able to manipulate the
entire training process. More recently, Qi et al. [11] intro-
duced an adaptive backdoor strategy capable of significantly
reducing latent separation. In their adaptive attack, adversaries
utilize distributed triggers [27] to make poison samples more
challenging to detect. Furthermore, to obscure the correlations
between the trigger and the target class, only a very small
number of poison data is injected into the dataset, and not
all trigger-attached samples are re-labeled to the target class.
Despite its simplicity, such adaptive attack is highly effective
and poses a new challenge for separation-based defense mech-
anisms. To formally characterize adaptive strategies against
certain backdoor defenses, we define them as follows:

Definition 1 (Adaptive Backdoor Attack). An adaptive back-
door attack refers to an adversarial strategy in which the
attacker, having prior knowledge of the model’s defense mech-
anisms, tailors the backdoor trigger and poisoning process to
specifically circumvent these defenses.

In Section V, we will evaluate the effectiveness of our
proposed method (LS2) not only against two adaptive attacks,
Adap-Blend and Adap-Patch, proposed by Qi et al. [11], but
also against an attack that we adaptively design based on the
strategy of LS2.

B. Backdoor Defense

1) Training-time Defense: Hidden-separation-based de-
fense is a typical training-time defense, where the defender
must train clean models (DNNs) on a polluted dataset. It
is widely observed that representations at the intermediate
layers of poisoned and benign samples generated by cer-
tain attacks are distinguishable. Based on such observation,
Tran et al. [6] designed an algorithm, Spectral Signature (or
PCA), to isolate the malicious samples with probabilistic solid
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guarantees. Additionally, Chen et al. [9] proposed employing
clustering algorithms to separate benign and poisoned data.
Subsequently, two more effective defenses, SCAn [28] and
SPECTRE [10], were introduced. Specifically, these defenses
mainly rely on the latent separability (or hidden separation)
assumption, which can be defined as follows:

Assumption 1 (Latent Separability). Latent separability as-
sumes that backdoor examples and clean examples are sepa-
rable in the latent space of a neural network, particularly in
its intermediate layers.

While the family of hidden-separation-based defenses has
proven successful in specific regimes, as mentioned earlier, it
is facing a new challenge from adaptive backdoor attacks [11].

Aside from hidden separability defenses, other training-
time defenses also sieve out malicious data to mitigate the
backdoor threat, but they utilize different characteristics of
the backdoored samples [7], [29]–[31]. Among these defenses,
DBD [30] and D-BR [31] also leverage some special charac-
teristics of poison representations to eliminate the implanted
backdoor. Despite sharing similarities with hidden-separation-
based defenses, the effectiveness of DBD and D-BR relies
on self/semi-supervised learning, which differs from the stan-
dard supervised learning procedure employed in SS, AC, and
SPECTRE.

2) Other Defenses: Other defenses can be divided into
testing-time defense and model defense. Testing-time defense
is designed to detect if input data is poisoned and filter
malicious samples to prevent the attacker from triggering the
backdoor during the inference stage [32], [33]. On the other
hand, model defense is performed after the training stage,
where the defender can own a small set of clean data and
computational resources to repair the polluted model. The
primary goal of model defense is to eliminate the backdoor
thoroughly implanted into the model [4], [5], [34], [35].

C. Label Smoothing

Label smoothing is a commonly used technique to improve
the generalization of a DNN [36]–[38]. Instead of training
the model with one-hot label vectors, label smoothing works
by mixing the original targets with a uniform distribution
and then computing the softmax cross-entropy concerning the
model’s logits output. This technique is generally understood
as a regularizer that mitigate the model from “over-fitting”
problems. Inspired by the calibration effect of label smoothing,
some backdoor attacks relabel the poisoned samples to the
target class with a small probability rather than 100% [11],
[39]. Such a poison strategy can improve the stealthiness
of backdoor attacks. Besides the calibration effect of label
smoothing, it is empirically studied that label smoothing can
lead to greater class separation [12], [13]. Based on the class
separation effect of label smoothing, our work aims to boost
the hidden separation for backdoor defenses.

III. PRELIMINARIES AND THREAT MODEL

1) Multiclass Classification: For a classification task with
K classes, we seek to find a function (model) F to classify

any instance X into one of labels Y = {1, 2, ...,K}. Usually,
F (·) can be decomposed as F (·) = Wf(·), where f indicates
the feature extractor and W is the projection weights of the
last linear layers. Meanwhile, let D = {(xi,yi)}Ni=1 denote
a training set, where each xi indicates the training sample
and yi is the corresponding label vector. In the general case,
y ∈ {0, 1}K is a one-hot vector, with only the ground-truth
y equal to 1. To find a F : X → RK fitting the distribution
from which D is drawn, we can minimize the empirical risk
R(F ;D):

R(F ;D) = E(x,y)∈D `(F (x),y) = −E(x,y)∈D log py(x),
(1)

where pk(x) = exp{F (x)k}∑K
j=1 exp{F (x)j}

= exp{〈Wk,f(x)〉}∑K
j=1 exp{〈Wj ,f(x)〉}

is

the likelihood the model assigns to the kth class and ` is the
softmax cross-entropy.

2) Label Smoothing: Different from the vanilla training
setting, label smoothing uniformly smooths the one-hot vector
y with a constant coefficient α in the range of [0, 1] [36]:

yLS,α = (1− α) · y +
α

K
· I, (2)

where I is an all-one vector. The empirical risk for label
smoothing (LS) can then be expressed as follows:

Definition 2 (Empirical Risk of LS). The empirical risk based
on softmax cross-entropy for label smoothing is defined as:

R(F ;D)LS,α = E(x,y)∈D `(F (x),yLS,α)

= −E(x,y)∈D

(
(1− α) log py(x) +

α

K

K∑
k=1

log pk(x)

)
.

(3)

3) Threat Model: In line with previous studies on backdoor
attacks, we consider a scenario where an adversary can ma-
nipulate a portion of the training data but does not train the
model personally. Formally, let’s consider a backdoor attacker
who has created a malicious training set Dadv = Db ∪ Dp.
Here, Db = {(xi,yi)}i=1 indicates the dataset that only
contains benign samples. Meanwhile, Dp = {(x̃i, ỹt)}i=1 is
the poisoned dataset where x̃i denotes the poisoned sample
and ỹt indicates the target one-hot label vector. Then, the
poisoned rate ε is defined as ε = |Db| / |Dadv|. When a victim
train a model on the adversarial dataset Dadv , the empirical
risk of both benign and poisoned samples is minimized.
Consequently, the compromised model would behave normally
on the benign samples but output the target labels when trigger
patterns are present. A hidden-separation-based defender needs
to train on the polluted dataset and filters out the malicious
samples effectively. The defender must ensure that the model
is not backdoored by the poisoned data while also maintaining
accuracy on clean data.

IV. THE PROPOSED METHOD

In this section, we first give a theoretical analysis of the class
separation effect of label smoothing. Then, we present the
observation result of the disparities in AUM values between
poisoned and benign samples. Putting these all together, we
introduce our adaptive smoothing strategy, LS2, to boost the
hidden separation for backdoor defenses.
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A. Class separation effects of label smoothing

Previous studies have investigated how label smoothing
affects the hidden representations extracted from DNNs [13],
[40], [41]. Their primary empirical observation is that label
smoothing helps increase class separation and enforce tight
clusters. While existing theoretical analyses of the mechanisms
behind label smoothing mainly focus on its impact on entropy
regularization [42], denoising effects [40], [43], and enhancing
generalization [44], a theoretical explanation for why label
smoothing can produce better class separation still needs to
be explored. Thus, we study its role as a regularizer with
respect to the weights W of prediction linear layers and
hidden representation f(x) and get the following theorem.

Theorem 1. The emperical risk based on cross-entropy of la-
bel smoothing R(F )LS,α is equivalent to the vanilla emperical
risk R(F ) with one additional regularization term Ω(F ):

R(F ;D)LS,α = R(F ;D) +
α

K
Ω(F ), (4)

where Ω(F ) = E(x,y)∈D
∑K
k=1〈Wy −Wk,f(x)〉.

Proof. See Appendix A.

From Theorem 1, we see that label smoothing can be
regarded as a regularization term Ω(F ), which influences both
W and f(x). For each sample pair (xi,yi), to minimize
Ω(F ), the learning algorithm should decrease the output of the
yth class Fy(x) = 〈Wy,f(x)〉 while increasing the outputs
for the other kth classes. Such an effect aligns with the role of
label smoothing in preventing the model from becoming overly
confident. Nevertheless, how does it affect the penultimate
layer representation f(x)?

As the gradient of Ω(F ) with respect to f(x) depends on
the weights W , it is not possible to directly compute such
gradient without knowledge of ∂W

∂f(x) . From another point
of view, we can observe that minimizing the regularization
term Ω(F ) essentially amounts to decreasing the cosine sim-
ilarity between dy =

∑K
k=1[Wy − Wk] and f(x). Thus,

for each sample pair (xi,yi), the gradient of Ω(F ) with
respect to f(x) is significantly influenced by the directional
vector dy . Simultaneously, the degree to which this gradient
is influenced depends on the coefficient α/K. Consequently,
when performing gradient descent, the orientation to update
representations of samples from the same class y is guided
by the same correction direction vector dy . Moreover, for two
samples from different classes y1 and y2, the update of their
representations would be affected by distinct directions dy1
and dy2 . Therefore, as a regularization with coefficient α/K,
label smoothing is beneficial for enhancing class separation
and making each label cluster tighter.

We further validate our analytical findings by training
PreActResNet-18 networks with different smoothing strategies
on CIFAR10 [45]. We then visualize the corresponding hidden
representations of three classes from CIFAR10 using t-SNE
[46], as shown in Fig. 2. Fig. 2a presents the visualization of
the representation generated by the model trained using the
vanilla cross-entropy loss (Equation (1)). Fig. 2b displays the
results for the model trained with standard label smoothing

(a) Vanilla (b) α = 0.1

(c) α1 = 0.1, α2 = 0.4 (d) α1 = 0.1, α2 = 0.7

Fig. 2. Visualization of penultimate layer’s activations of PreActResNet-18
on CIFAR10 with different label smoothing settings.

(Equation (3)), where α = 0.1. For Fig. 2c and Fig. 2d, we
randomly split the data for each class into two equal groups
and set the corresponding smoothing rates to α1 and α2. For
example, in Fig. 2c, we first divide the data from each class C
into two equal groups, GC,1 and GC,2, and set the smoothing
rate to α1 = 0.1 for GC,1 and α2 = 0.4 for GC,2 across all
classes.

As shown in Fig. 2b, setting α = 0.1 results in more
compact representation clusters for each class compared to
the result without smoothing, which is consistent with prior
research findings. When we divide the data for each class
into two equal parts and apply different smoothing rates, as
illustrated in Figs. 2c and 2d, the clusters for each class are
visibly split into two distinct groups. This effect is especially
pronounced when the smoothing rates are set to α1 = 0.1 and
α2 = 0.7, leading to a more noticeable intra-class splitting.

However, we encounter an issue when we redirect our
focus to our initial objective of improving separability-based
backdoor defenses. We notice that label smoothing has a
limited impact on distinguishing between benign and poisoned
samples belonging to the same class. The regularization term
Ω(F ) applies the same correction gradient to both clean and
poisoned samples, resulting in minimal change in the relative
Euclidean distances between their representations.

B. Learning Speed-driven Label Smoothing

An ideal way to separate the representations of clean and
poison samples is to assign an adaptive smoothing rate α for
each sample. As we do not know which data points were
contaminated, we demand additional characteristics to guide
us in setting the smoothing rates for data within each class.
Here, we use a metric, AUM [14], to assess whether the model
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(h) Adap-Patch
Fig. 3. The comparison of the AUM value in different epochs of PreActResNet-18 on CIFAR10.

quickly learns a sample. Based on the AUM metric, samples
with high AUM values are considered “easy-to-learn” and are
assigned a higher smoothing parameter. In contrast, samples
with low AUM values would receive a lower smoothing rate.

1) Area Under the Margin: As introduced in [14], the AUM
metric is a technique initially used for identifying mislabeled
data in noisy label learning, which utilizes differences in logits
of benign and mislabeled samples during training. Despite
the different assumptions and scenarios of label noise and
backdoor poisoning attacks, we find significant differences
between clean and backdoor poison samples in this metric.
Suppose that z(t)(x) is the logits vector (pre-softmax output)
when model F classifies a sample x labeled as y at epoch t.
For each iteration, the algorithm would record a margin value:

M t(x, y) = z(t)y (x)− z(t)l (x), (5)

where z
(t)
l (x) = maxj 6=y z

(t)
j (x) is the largest logit except

z
(t)
y (x). After training for T epochs, a sample’s margin is

averaged at each epoch to get the area under the margin (AUM)
value:

AUMT (x, y) =
1

T

T∑
t

M t(x, y). (6)

For a data pair (x,y), AUM can also be used to assess whether
the data is “easy-to-learn.” A higher AUM value indicates that
the model can quickly memorize the data, while a lower AUM
value suggests that the data is less conducive to learning.

Fig. 3 presents the averaged AUM values of different types
of samples at each epoch. In the evaluation, we performed
eight attacks on CIFAR10, including six label-flipping attacks
(i.e., BadNets, Blend, ISSBA, LF, Adap-Blend, and Adap-
Patch), and two clean label attacks (i.e., LC and SIG). As
shown, with the growth of the training epoch, the AUM values
of both benign and poisoned samples are rising. Since the

benign samples account for a large proportion of training
data in the backdoor attack scenario, the averaged AUM of
benign samples is nearly identical to the AUM value of all
the samples.

In addition, except for the SIG attack, the curve repre-
senting the poison AUM for other attacks always remains
below the curve for benign samples. We also observe that
during the early stages of training, the AUM values of poison
samples within each class exhibited significant differences in
most cases when compared to the averaged AUM of all the
intra-class samples. This observation implies that benign and
poisoned samples have distinct learning difficulty levels.

To further explore the distribution of AUM values during
the early learning epochs, we illustrate the density of AUM
values for eight attacks at the 10th epoch in Fig. 4. It can be
observed that the AUM values of these label-flipping attacks
are generally lower than those of benign data. However, the
results for clean label attacks, as shown in Figs. 4e and 4f, do
not follow the same pattern. For LC attack, the AUM values
of the attack data are similar to those of benign samples, while
in the SIG attack, the AUM values of the attack data are
higher than those of clean data. This phenomenon is due to
the similarity between label-flipping attacks and the noisy label
problem. In label-flipping attacks, malicious samples’ original
labels differ from benign ones, rendering them “hard-to-learn”.
Conversely, the poison samples do not undergo label changes
in clean label attacks. However, with the addition of certain
adversarial perturbations or specific triggers, their AUM values
become similar to those of benign data, indicating that they
are “easy-to-learn.”

Building upon these observations, we make the following
assumption regarding the AUM values for poisoned and clean
samples, which helps us explain the latent separability effects
of LS2.
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Fig. 4. The comparison of AUM value density between benign and poison samples of PreActResNet-18 at 10th epoch on CIFAR10.

Assumption 2. We assume that poisoned samples and clean
(benign) samples exhibit different Area Under Margin (AUM)
values during the early stages of training. Specifically, the
AUM values of poisoned samples within each class exhibit
significant differences when compared to the averaged AUM
of all the intra-class samples.

Here, we highlight that the terms “hard-to-learn” and “easy-
to-learn” used in our paper are defined under the AUM metric.
While some prior studies have employed similar terms, they
may refer to different metrics for filtering poison samples.
Section S.IV in the supplementary material provides more
comprehensive discussion and additional results.

2) Smoothing Strategy: Following the above analysis, we
propose a new training strategy to enhance the distinguisha-
bility of poison and benign samples in their representations.
The intuition behind our algorithm is to apply a larger label
smoothing rate to samples with high AUM values (referred
to as “easy-to-learn”), while applying a smaller rate to those
with low AUM values. Our approach initially intends to mit-
igate the “over-fitting” problem. Since the AUM distribution
between benign and poisoned samples differs, it also implicitly
separates poisoned samples from clean ones, in line with
the analysis in Section IV-A. Specifically, we employ linear
transformation to rescale all AUM values to fall within a
predefined smoothing rate interval [0, β]. Then, we obtain the
smoothing rate αi for each sample pair (xi,yi):

αi = β · AUMT (xi, yi)− AUMT
min

AUMT
max − AUMT

min
. (7)

We give the pseudocode in Algorithm 1. In the warm-up
phase, we initially employ a small α, such as 0.1, to smooth
all labels in the dataset and proceed with model training,
recording the corresponding M t(·) at each step. At a specific
epoch T , we re-smooth all label vector yi using the smoothing
rate αi and then continue training the model on the malicious

Algorithm 1 Learning Speed-driven Label Smoothing
Input: Malicious dataset Dm = {(xi,yi)}Ni=1,

Maximal epoch E, Warmup smoothing rate α,
Warmup epoch T , Upper smoothing bound β

Output: Model trained with LS2

Initialize F with parameters θ;
Compute smoothed label ŷi = yLS,αi ,∀yi ∈ Dm;
Let D̂m = {(xi, ŷi)}Ni=1;
for t = 1 to E do

Using SGD, update θ to minimize R(F ; D̂m);
Using 5, compute M t(xi, yi), ∀(xi,yi) ∈ Dm;
if t == T then

Using 6, compute AUMT (xi, yi), ∀(xi,yi) ∈ Dm;
Using 7, rescale AUMT (xi, yi) to αi falling in the
interval [0, β] , ∀(xi,yi) ∈ Dm;
Re-smooth label vector ŷi = yLS,αi

i ,∀yi ∈ Dm;
end if

end for
return model F with parameters θ

dataset. It is important to note that our algorithm differs from
other dynamic label smoothing training strategies in that we
adjust the smoothing rate only in the T th round, rather than in
every round [41], [44].

Here, we emphasize that we cannot directly separate poison
samples from the rest by AUM values, as we cannot determine
whether the AUM values of poison samples are higher or
lower than those of the overall data. Nevertheless, based on
this characteristic, we can still assign an adaptive smoothing
rate to each sample data within each class. For example,
when against adaptive attacks, LS2 assigns low smoothing
rates to the poison samples as they exhibit “hard-to-learn”,
Figs. 3g and 3h. Conversely, benign samples receive a higher
smoothing rate. Thus, after training the model with LS2, the
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latent separability can be preserved.

C. Theoretical Analysis of LS2

In this section, we analyze the empirical risk of the LS2

algorithm and its impact on class separability in the latent
space. The adaptive label smoothing rate αi for each data point
xi plays a crucial role in improving the robustness of the
model against backdoor attacks. The empirical risk for the LS2

algorithm, where the smoothing rate αi is adaptively allocated
for each data point xi, is defined as:

Definition 3 (Empirical Risk of LS2). The empirical risk for
the LS2 strategy, where the smoothing rate αi is adaptively
allocated for each data point xi using Equation (7), is defined
as:

R(F ;D)LS
2, β = E(xi,yi)∈D `(F (x),yLS,αi)

= −E(xi,yi)∈D

(
(1− αi) log pyi(xi) +

αi
K

K∑
k=1

log pk(xi)

)
.

(8)

It’s easy to see that, unlike the standard label smoothing
loss (Equation (3)), every sample pair (xi,yi) has its own
smoothing rate αi in LS2. Moreover, by applying Theorem 1,
we can also reformulate the empirical risk by including the
regularization term ΩLS

2, β . This term captures the influence
of label smoothing on the model’s learning behavior, promot-
ing better separability between the feature representations of
poisoned and clean samples.

ΩLS
2, β(F ) = E(xi,yi)∈D

K∑
k=1

αi
K
〈Wyi −Wk,f(xi)〉. (9)

Thus, we can express the empirical risk of LS2 as:

RLS
2, β(F ;D) = R(F ;D) + ΩLS

2, β(F ). (10)

Using the LS2 strategy, for samples belonging to the
same class yi, their latent representations are updated in
the same direction, guided by the same correction vector
dyi =

∑K
k=1[Wyi −Wk]. This effect is analogous to LS,

as it tightens the feature clusters for each class.
The impact of LS2 on the latent separation between poi-

soned and clean samples is primarily driven by the adaptive
smoothing rate αi assigned to each sample. For both clean
and poisoned samples belonging to the same class yi, their
penultimate latent representations are influenced by the same
direction vector dyi . However, the degree of influence of dyi
on the feature representation f(xi) depends on the smoothing
rate αi, which varies for each sample.

Given Assumption 2, the adaptive nature of αi ensures that
the regularization effect on poisoned samples differs from that
on clean samples. This differential adjustment enhances the
latent separation between the two types of samples in the
feature space. Formally, let the feature representations of a
clean sample xc and a poisoned sample xp from the same
class yi be denoted as f(xc) and f(xp), respectively. Then,
when considering only the effect of ΩLS

2, β(F ), the difference
in adjustments between xc and xp can be expressed as:

∆f =
(αp
K
− αc
K

)
dy, (11)

where αp and αc represent the smoothing rates for xp and xc,
respectively. This linear relationship implies that the greater
the difference in αi values for poisoned and clean samples,
the greater the separability between the two types in the latent
space. Recall that Figs. 2c and 2d shows that the clusters
for each class are visibly split into two distinct groups when
different smoothing rates are applied to the data. Based on
the above analysis, as long as the AUM values of poisoned
and clean samples differ significantly, the poisoned and clean
samples are expected to be separated in the latent space, as
shown in Figs. 2c and 2d. The T-SNE visualization in Fig. 5
further supports this claim.

Thus, the adaptive label smoothing in LS2 works to:
• Tighten the feature clusters for each class, improving their

separability from other classes.
• Increase the distance between poisoned and clean samples

in the latent space, thereby improving latent separation.
Intuitively, the use of label smoothing in the LS2 training

strategy makes it harder for the model to learn each sample,
as the sample labels are smoothed. However, as discussed in
the previous analysis, the purpose of using label smoothing
is to leverage its effect on the penultimate representation
distribution of the data, thereby improving the model’s ability
to distinguish between clean and poisoned samples.

Additionally, LS2 can be viewed as a special form of
adaptive label smoothing, and many studies have shown that
adaptive label smoothing strategies do not negatively affect
the model’s convergence [47], [48]. Therefore, LS2 can be
considered an effective strategy to enhance the model’s ability
to distinguish between clean and poisoned samples. On the
other hand, the analysis above is based on the assumption in
Assumption 2. Given the possibility that Assumption 2 may
not hold in certain cases, we design an adaptive attack in
Section V to validate the robustness of LS2.

V. EXPERIMENTS

A. Experimental settings

1) Attack configurations: We consider 8 typical backdoor
attacks: BadNets [1], Blend [15], ISSBA [19], Low Frequency
(LF) [20], Label Consistent (LC) [21], SIG [22], Adap-Blend
and Adap-Patch [11]. BadNets and Blend are two classical
label-flipping attacks with fixed trigger patterns. ISSBA and
LF are sample-specific poison attacks where the trigger is
independently generated for each poison sample. LC and
SIG are two effective clean-label attacks. Adap-Blend and
Adap-Patch are adaptive attacks specifically designed against
hidden-separation-based defenses. Following the prior studies,
we conduct all of these attacks and defenses on CIFAR10,
CIFAR100 [45] and GTSRB [49] using Pre-activation-ResNet-
18 [50]. To further validate our method, we also conducted
experiments using VGG19-BN on CIFAR10 and ImageNet100
[51] (with each class containing 1300 training images).

On the CIFAR10, CIFAR100 and ImageNet100 datasets, the
target label for all backdoor attacks is class 0, corresponding
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to the specific class names “airplane”, “apple” and “tench”
. On the GTSRB dataset, the target label for all backdoor
attacks is class 4, corresponding to the specific class name
“70-speed”. In line with the settings of Adap-Blend and Adap-
Patch attacks [11], we set the poison rate as small as possible
while ensuring that the attack success rate for each attack
remained sufficiently high. Unless otherwise specified, the
poison rates of various attacks are set as follow:

For CIFAR10, all attacks except for BadNet and ISSBA
have a poison rate of ε = 0.3% (150 poison samples). Since
the ASR values for BadNet and ISSBA at ε = 0.003 are below
10%, they are not considered successful backdoor attacks.
Therefore, we set the poison rate for these two attacks to
ε = 1% (500 poison samples). In the case of GTSRB, the
poison rate for all attacks is ε = 0.4% (157 poison samples).
Due to the low success rates of most backdoor attacks on
the CIFAR100 dataset when the poisoning rate ε is set to a
low value, we choose to use ε = 1% (500 poison samples).
However, CIFAR100 has only 500 training samples per class.
Therefore, at this poison rate, all data under the target label of
clean label attacks would be replaced with poison samples,
which does not align with the basic premise of backdoor
attacks. Additionally, both LC and SIG attacks have poor
attack performance at lower poison rates, with success rates
below 40%. Therefore, we opt not to conduct experiments with
clean label attacks on CIFAR100. For ImageNet100, we set the
poison rate to 0.5% (650 poison samples) for all attacks.

2) Defense configurations: For hidden-separation-based de-
fenses, we consider four defenses as the baseline: Spectral
Signature (SS) [6], Activation Clustering (AC) [9], SCAn [28]
and SPECTRE [10]. Additionally, we also include 7 state-of-
the-art backdoor defenses: NC [3], ABL [7], ANP [4], I-BAU
[5], AWM [52], DBD [30] and D-BR [31]. 5% of the clean
training dataset is provided for defenses demanding clean data.
All other settings are identical to the default configuration in
their original papers for fair comparisons. Regarding standard
label smoothing, we set the smoothing rate α to 0.1. For our
smoothing strategy, we initially smooth the label with a rate
of 0.1 during the warm-up stage. In the case of CIFAR10,
CIFAR100 and ImageNet100, we set the warm-up epochs
to 10, while for GTSRB, the warm-up epochs are set to 2.
Afterward, we set the upper smoothing bound β = 0.2.

See Section S.II in the supplementary material for more
implementation details and comprehensive settings of various
attacks and defenses.

3) Training Settings: Throughout all training processes, we
employed the stochastic gradient descent (SGD) optimization
method with a batch size of 128. We set the initial learning rate
to 0.01 and decayed it using the cosine annealing strategy [53].
For the CIFAR-10 and CIFAR-100 datasets, we trained for a
total of 100 epochs. For the GTSRB dataset, we trained for 50
epochs. In the case of the ImageNet100 dataset, we trained for
400 epochs. All experiments were run on one Ubuntu 18.04
server equipped with four NVIDIA RTX A4000 GPUs.

4) Evaluation metric: To evaluate the performance of var-
ious backdoor defenses, we employ two primary metrics:
(1) the attack success rate (ASR), which is the ratio of
attack samples misclassified as the target label, and (2) the

accuracy on benign data (BA). A good defense is expected
to have a high BA and low ASR (i.e., close to zero). For
a more effective comparison among hidden-separation-based
defenses, we utilize Prm to indicate the ratio of poison samples
that are successfully removed. Formally, let the clean test
dataset be denoted as Dtest = {(xi,yi)}i=1, and the dataset
for evaluating ASR as Dtest,p = {(x̃i, ỹt)}i=1, where x̃i
represents the poisoned sample and ỹt denotes the target one-
hot label vector. Also, Dp refers to the poisoned dataset used
for training the model. The metrics ASR, BA, and Prm can
then be defined using the indicator function I(·) as outlined in
Table I.

TABLE I
MATHEMATICAL DEFINITIONS OF EVALUATION METRICS.

Mathematical Definition Implication
Lower ASR indicates better defense

ASR =

∑
(x̃i,ỹt)∈Dtest,p

I (F (x̃i) = ỹt)

|Dtest,p|
performance, with fewer attack

samples being misclassified.

Higher BA indicates that the

BA =

∑
(xi,yi)∈Dtest

I (F (xi) = yi)

|Dtest|
model performs well on clean data,

which is crucial for generalization.

Higher Prm indicates a more

Prm =

∑
(x̃i,ỹt)∈Dp

I (x̃i removed)

|Dp|
effective defense in removing

poison samples from the dataset.

B. Representation visualization
To intuitively compare the effects of different training

strategies on the penultimate representations, we provide cor-
responding T-SNE visualizations in Fig. 5. Here, we display
the visualization results for two adaptive attacks, Adap-Blend
and Adap-Patch, against hidden-separation-based defenses on
CIFAR10. The target label is set to 0 for both attacks, and
the number of poison samples is fixed at 150. As depicted
in Figs. 5a and 5b, when training the DNN with the standard
approach the penultimate representations of poison and benign
samples are entangled and not well-separated. When extracting
the representations from DNN trained with label smoothing,
we notice that the majority of poison samples have segregated
from the clean ones for Adap-Blend attacks. However, only a
portion of the poison samples have been separated for Adap-
Patch attacks. As shown in Figs. 5e and 5f, LS2 demonstrates
its effectiveness by ensuring that the poison samples from
both adaptive attacks have been successfully isolated from the
clean data. More visualizations of other attacks are provided
in Figure S5 in the supplementary material.

C. Performance in Eliminating Poison Samples
In Table II, we compare the impact of standard label

smoothing and our smoothing strategy LS2 on various hidden-
separation-based defenses on CIFAR10 and GTSRB. We ob-
serve that on the CIFAR10 dataset, the original four defense
methods have inferior resistance against the two types of
adaptive attacks, with very low Prm values. For AC defense,
it cannot defend against backdoor attacks under any training



PREPRINT 9

(a) Adap-Blend (b) Adap-Patch

(c) Adap-Blend + LS (d) Adap-Patch + LS

(e) Adap-Blend + LS2 (f) Adap-Patch + LS2

Fig. 5. T-SNE visualization of the activations from penultimate layers of
PreActResNet-18 against Adap-Blend and Adap-Patch backdoor attacks on
CIFAR10 with different label smoothing settings.

method effectively. While label smoothing and our approach
offer some enhancements for SS and SPECTRE defenses, the
improvement in Prm values with label smoothing is insuffi-
cient to defend against these two backdoor attacks. When
extracting features from models trained with LS2, SS and
SPECTRE defenses successfully reduce the ASR values to
below 10%. On the GTSRB dataset, both label smoothing
and our training strategy significantly improve the filtering of
poisoned data. LS2 also greatly enhances the performance of
SCAn, achieving 5.1% and 3.4% ASRs against Adap-Blend
on CIFAR10 and GTSRB, respectively, despite the final ASRs
against the Adap-Patch attack remaining at 13.5% and 17.3%.
Here, we explain the poor performance of the AC defense on
the CIFAR10 dataset. The AC algorithm relies on a simple
K-means clustering algorithm to filter poisoned samples in
the latent space. When defending against attacks with a tiny
number of poison samples (0.3% poison rate), separating the
data into two clusters is challenging, as shown in Fig. 5.
Therefore, the improvement provided by LS or LS2 may be
limited for such simple clustering defense methods.

TABLE II
POISON SAMPLES REMOVAL PERFORMANCE COMPARISON OF

PREACTRESNET-18 WITH AC, SS, SCAN AND SPECTRE DEFENSES
AGAINST ADAP-BLEND AND ADAP-PATCH.

Dataset↓ Attack→ Adap-Blend Adap-Patch
Defense↓ Prm↑ ASR↓ Prm↑ ASR↓

CIFAR10

No Defense (-) 71.9 (-) 78.8

AC 0.0 71.5 0.7 77.2
AC + LS 3.3 70.7 1.3 77.6
AC + LS2 0.0 71.2 7.3 71.3

SS 0.7 71.8 5.3 77.4
SS + LS 33.3 52.5 40.0 44.6
SS + LS2 72.7 2.7 63.3 5.1

SCAn 11.3 70.2 6.0 74.6
SCAn + LS 13.3 69.6 32.0 72.3
SCAn + LS2 72.7 5.1 54.7 13.5

SPECTRE 2.6 71.2 4.0 77.2
SPECTRE + LS 66.7 13.7 78.0 4.3
SPECTRE + LS2 82.0 2.4 80.0 2.5

GTSRB

No Defense (-) 78.0 (-) 55.3

AC 45.9 69.8 29.3 47.1
AC + LS 84.7 4.8 66.9 14.6
AC + LS2 86.6 4.4 86.0 3.6

SS 48.4 66.3 26.8 49.9
SS + LS 89.2 6.2 84.1 3.4
SS + LS2 94.3 4.3 96.6 2.5

SCAn 54.0 60.5 34.0 42.7
SCAn + LS 51.2 61.1 37.3 44.1
SCAn + LS2 81.2 3.4 61.3 17.3

SPECTRE 42.7 44.7 31.2 35.6
SPECTRE + LS 92.4 4.5 97.5 2.6
SPECTRE + LS2 96.8 4.4 98.1 2.5

In the supplementary material (Section S.V), we demon-
strate that when facing other attacks, label smoothing and
LS2 also have some improvement in the performance of these
four defense methods. However, more than the enhancement
these two training strategies provide is needed to defend
against all attacks. For example, on CIFAR10, AC and SS
are unable to defend against Blend attacks across different
training strategies.

D. Sensitivity to Hyperparameter choices
As mentioned in Algorithm 1, LS2 mainly involves two

hyperparameters: warmup epoch T and upper smoothing
bound β. Figure 6 presents the results obtained using different
warmup epoch T with a fixed upper smoothing bound β = 0.2.
We observe that regardless of how warmup epoch T is
changed, the enhancement of LS2 on AC defense remains
limited. With the increase in T , the effectiveness of SS and
SCAn defenses shows a trend of improvement followed by
deterioration. The SPECTRE defense remains relatively robust
to the choice of T , showing no significant variation.

We also empirically explore the impact of different smooth-
ing rates α and upper smoothing bounds β on AC, SS,
SCAn and SPECTRE. Here, the warmup epoch T for LS2

is fixed at 10. The results are presented in fig. 7. We observed
that, as the smoothing rate α increases, the performance of
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Fig. 6. Effect of warmup epoch T on hidden-separation-based defenses
against adaptive attacks on CIFAR10. We performed 3 training runs for each
warmup epoch T .
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Fig. 7. Effect of label smoothing and LS2 on hidden-separation-based
defenses of PreActResNet-18 against adaptive attacks, CIFAR10.

AC and SPECTRE defenses in dealing with two adaptive
attacks remains relatively unchanged. Larger α values do not
significantly improve the defense effectiveness of AC and
SPECTRE but reduce the Prm values of SCAn. However,
an interesting phenomenon is that the SS defense exhibits
improved filtering performance on poisoned samples as α
increases. When α > 0.6, SS with LS outperforms SS
with LS2 in defending against Adap-Patch. At α = 0.8, the
performance of SS with LS is on par with the SPECTRE
algorithm at the same α or β settings.

Moreover, increasing the Upper Smoothing Bound β does
not enhance the effectiveness of the AC defense. However, a
larger β can reduce the poisoning sample filtering rate Prm
of SS, SCAn and SPECTRE. This weakening effect is more
pronounced, as shown in Fig. 7b, in the SS defense against
Adap-Patch. This result implies that a small β is desirable for
training the model.

E. Performance of LS and LS2 with Varying Poison Rates
As noted in the original paper on Adap-Blend and Adap-

Patch [11], a low poison rate is necessary for the success of
adaptive attacks. Their results show that a high poison rate may
cause adaptive attacks to fail in evading hidden-separation-
based defenses on small datasets like CIFAR10. Thus, there
are limited choices of poison rates for performing adaptive
attacks on such datasets. Since ImageNet100 is a dataset with
a larger scale than CIFAR10, GTSRB, and CIFAR100, we
can increase the poison rate of adaptive attacks on this dataset
while maintaining the effectiveness of the attacks.

Here, we present Table III to show the performance of
LS and LS2 against Adap-Blend and Adap-Patch under two

TABLE III
RESULTS OF THE HIDDEN-SEPARATION-BASED DEFENSES AGAINST

ADAP-BLEND AND ADAP-PATCH UNDER POISON RATE 1% AND 5%. THE
EXPERIMENTS ARE CONDUCTED ON THE IMAGENET100 DATASET WITH

VGG19-BN.

Attack %
No

Def. SS +LS +LS2 AC +LS +LS2 SCAn +LS +LS2 SPECTRE +LS +LS2

A-Blend
ε = 1.0%

Prm (-) 47.6 67.4 70.0 31.4 31.6 31.2 52.3 72.1 87.4 44.0 76.7 86.5

BA 83.0 82.9 82.2 83.0 82.5 82.5 82.9 81.9 82.5 82.4 82.2 82.4 82.4

ASR 88.3 75.8 19.5 17.1 77.1 76.1 77.6 40.2 18.1 4.1 74.8 14.1 5.4

A-Patch
ε = 1.0%

Prm (-) 23.1 49.4 48.6 11.5 13.7 11.5 56.2 59.2 64.2 59.5 78.2 86.1

BA 82.5 83.5 83.1 83.1 82.5 81.6 82.3 82.1 82.3 82.0 82.5 82.5 82.5

ASR 92.6 90.2 70.2 70.3 92.5 93.7 91.9 52.7 50.3 20.2 50.5 4.3 5.9

A-Blend
ε = 5.0%

Prm (-) 77.5 80.9 81.5 57.2 58.7 59.5 94.2 95.5 95.1 95.6 96.9 96.6

BA 82.4 82.4 82.3 82.2 82.0 82.2 83.2 81.8 82.3 82.1 81.9 82.4 83.2

ASR 99.7 61.8 55.8 56.4 91.2 92.1 90.9 7.3 4.1 3.1 4.2 4.3 4.2

A-Patch
ε = 5.0%

Prm (-) 80.9 80.9 81.3 78.9 77.9 77.9 90.3 91.2 92.7 91.5 94.7 96.6

BA 82.8 82.8 83.1 82.2 82.1 82.6 81.5 82.2 81.8 82.1 82.4 82.1 82.6

ASR 99.7 36.8 38.7 37.8 32.0 36.5 38.2 6.5 5.1 5.2 5.8 4.9 5.2

different poison rates, 1% and 5%, on ImageNet100. The
number of payload data is the same as the poison samples. The
defense configuration follows the same settings as previous
experiments.

When the poison rate ε = 1%, Adap-Blend and Adap-Patch
can still evade the original SS, AC, SCAn and SPECTRE
defenses. When the poison rate ε = 5%, Adap-Blend and
Adap-Patch can bypass SS and AC but fail to break through
SCAn and SPECTRE. These results align with the statements
in [11]. Furthermore, under both poison rates, LS and LS2

significantly enhance the performance of SS, SCAn and SPEC-
TRE defenses, except for AC. The combination of SPECTRE
and LS2, or SCAn and LS2, shows better performance against
Adap-Blend and Adap-Patch. Additionally, SPECTRE+LS2

always effectively defends against various attack types.

F. Effectiveness of LS and LS2

The effectiveness of various defenses against different
backdoor attacks on the CIFAR10, CIFAR100, GTSRB and
ImageNet100 datasets is presented in Table IV and Table V.
Here, we consider a defense successful if it reduces the ASR
to below 10%, as indicated in green. Otherwise, we consider
it a failure. Due to the limited ability of SS and AC defenses
to eliminate some backdoor threats, we primarily display the
results of defense combining label smoothing or LS2 with
the SPECTRE algorithm here. Though SCAn is also greatly
enhanced by LS2, the results are not always comparable to
those of SPECTRE. Thus, we present the detailed results of
SCAn in the supplementary material.

Table IV presents the results of PreActResNet-18 on CI-
FAR10, GTSRB and CIFAR100. Overall, most defense algo-
rithms can only mitigate a few backdoor attack threats and
cannot comprehensively defend against all backdoor attacks.
The original SCAn and SPECTRE algorithms perform well but
cannot eliminate the backdoors implanted by adaptive attacks.
On the GTSRB dataset, the combination of the SPECTRE
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TABLE IV
RESULTS OF PREACTRESNET-18 ON CIFAR10 AND GTSRB. RESULTS WITH AN ASR ABOVE 25% ARE HIGHLIGHTED IN RED, THOSE WITH AN ASR

BETWEEN 10% AND 25% ARE HIGHLIGHTED IN YELLOW, AND THOSE WITH AN ASR BELOW 10% ARE HIGHLIGHTED IN GREEN.

Dataset Attack↓ % No Defense NC ABL ANP I-BAU AWM DBD D-BR SS AC SCAn SPECTRE SPECTRE
+LS

SPECTRE
+LS2

CIFAR10

BadNets BA 93.35 92.40 91.12 93.29 90.37 88.73 80.33 88.31 89.40 84.60 92.23 92.40 92.60 92.35
ASR 88.70 7.67 0.86 0.33 1.47 2.13 0.40 0.00 43.10 45.40 1.60 4.60 2.40 3.22

Blend BA 93.75 93.75 89.10 85.72 89.80 88.87 74.65 86.60 91.10 92.30 91.45 92.32 92.34 92.41
ASR 86.10 86.10 47.50 9.71 62.15 40.10 0.04 0.00 80.20 84.10 2.51 7.10 2.40 2.43

ISSBA BA 93.56 91.32 85.04 92.65 90.84 88.90 79.31 89.24 93.40 93.42 93.19 93.14 92.94 93.14
ASR 71.20 3.19 1.66 4.79 1.59 4.43 0.23 15.21 69.40 69.10 1.21 2.10 2.30 3.12

LF BA 93.75 93.75 87.45 86.06 89.85 87.81 82.32 85.41 93.67 93.55 91.14 90.45 92.27 90.34
ASR 69.80 69.80 15.70 15.88 18.07 49.13 0.04 2.40 69.90 69.10 4.30 5.10 40.20 2.36

LC BA 93.59 91.73 87.60 90.15 91.46 88.12 84.34 88.46 88.32 89.50 90.43 91.23 91.34 91.01
ASR 87.07 3.83 9.31 36.27 28.61 10.88 1.32 0.41 68.10 86.90 12.25 0.10 0.10 0.10

SIG BA 93.87 88.90 88.40 91.25 90.48 87.71 80.68 84.06 90.10 91.30 89.43 89.43 91.31 89.74
ASR 77.52 14.38 15.40 47.59 44.32 36.91 20.33 0.00 77.75 73.60 7.10 0.50 73.30 0.54

Adap-Blend BA 93.78 93.78 85.34 92.35 90.12 87.89 79.06 87.83 91.36 92.45 90.14 90.34 89.46 88.61
ASR 71.89 71.89 68.62 31.73 11.38 9.63 22.41 16.82 71.80 71.50 70.20 71.20 13.70 2.38

Adap-Patch BA 93.42 92.68 86.45 90.63 89.34 88.05 82.10 90.41 91.32 92.67 90.11 91.40 90.45 90.46
ASR 78.84 8.44 47.32 10.33 4.10 2.40 2.11 0.04 77.40 77.20 74.60 77.20 4.30 2.50

GTSRB

BadNets BA 98.16 97.83 96.48 97.66 96.27 96.31 83.72 96.41 96.45 97.45 97.12 96.86 96.57 97.42
ASR 73.81 0.00 6.56 4.20 0.01 4.12 0.00 0.00 4.67 6.53 1.45 0.12 0.15 0.10

Blend BA 98.55 98.55 97.44 94.71 95.91 97.49 86.32 92.31 96.56 97.52 97.02 96.18 97.35 98.37
ASR 89.24 89.24 68.42 65.12 48.25 55.64 0.00 0.04 23.82 25.46 29.51 7.49 2.45 2.46

ISSBA BA 98.47 97.38 96.28 86.10 95.47 96.95 81.32 91.61 95.34 96.44 97.51 97.26 96.94 96.44
ASR 71.76 1.26 7.63 7.92 8.07 8.76 0.04 15.02 7.89 7.67 2.72 1.26 1.13 0.48

LF BA 98.10 97.12 97.23 97.63 95.91 96.84 84.52 94.41 96.89 97.01 96.78 96.78 96.93 96.67
ASR 90.33 0.50 5.67 0.13 47.91 4.04 0.12 2.33 81.45 84.23 1.32 0.42 0.45 0.41

LC BA 98.01 98.01 97.17 96.53 96.76 96.23 80.44 95.43 97.56 96.87 96.78 96.78 96.56 96.62
ASR 53.21 53.21 22.45 7.59 1.85 5.01 0.00 0.04 47.68 52.81 1.25 8.76 1.78 1.76

SIG BA 98.35 96.19 98.69 92.12 95.18 95.45 81.69 96.32 96.45 97.45 96.92 97.55 96.58 97.13
ASR 58.26 32.38 64.90 30.36 4.70 55.53 16.43 0.00 40.29 58.13 19.67 4.67 6.53 4.55

Adap-Blend BA 98.53 98.53 95.53 97.73 96.57 96.68 85.03 96.53 95.42 96.78 96.39 97.53 98.23 97.74
ASR 77.99 77.99 45.32 38.63 8.20 25.78 0.00 22.13 66.29 69.79 60.52 44.67 4.52 4.41

Adap-Patch BA 98.08 96.86 96.67 97.87 97.05 96.22 82.42 97.05 96.86 97.44 96.94 96.57 97.58 97.25
ASR 55.33 0.00 20.43 0.00 0.01 0.10 0.01 0.00 49.89 47.06 42.70 35.56 2.57 2.51

CIFAR100

BadNets BA 70.75 68.57 60.46 69.13 64.67 65.53 61.61 62.38 68.37 67.42 66.93 68.67 67.76 67.45
ASR 71.22 0.15 0.08 5.77 1.25 0.89 2.47 2.33 71.04 2.13 4.71 70.23 2.31 2.34

Blend BA 70.47 70.47 59.45 65.58 64.75 61.93 60.53 65.63 66.78 68.61 69.45 67.35 65.67 66.89
ASR 90.80 90.80 0.00 61.84 68.33 54.71 85.14 0.00 88.35 88.83 84.56 88.56 42.55 6.13

ISSBA BA 70.44 66.92 57.54 62.64 61.95 61.71 62.63 64.00 67.44 66.92 64.86 66.86 68.86 67.42
ASR 55.77 0.10 0.03 5.67 0.63 3.28 0.00 15.32 2.67 53.42 4.22 0.43 0.10 0.10

LF BA 69.81 69.81 63.14 64.79 64.18 62.16 60.13 65.36 66.23 65.33 65.46 64.89 65.29 66.25
ASR 58.83 58.83 40.34 3.26 2.49 17.05 0.01 0.04 42.17 2.67 1.62 2.85 3.13 2.87

Adap-Blend BA 70.71 70.71 59.21 64.82 63.97 61.77 63.39 64.16 68.42 69.28 68.04 67.97 68.97 68.53
ASR 88.14 88.14 42.67 62.23 47.99 47.10 0.33 23.42 44.65 88.31 44.11 46.83 6.32 6.22

Adap-Patch BA 70.48 70.00 55.31 62.79 61.95 62.70 60.03 65.53 67.25 69.41 68.39 69.33 68.38 67.45
ASR 91.69 0.20 40.32 19.96 2.94 7.35 0.00 0.00 50.23 90.32 44.02 45.47 0.10 0.00

algorithm and standard label smoothing also effectively re-
moves the backdoors. However, on the CIFAR10 dataset, this
combination is less effective than the original SPECTRE algo-
rithm when dealing with SIG and LF attacks, highlighting the
limitations of label smoothing in enhancing latent separability.
In contrast to CIFAR10 and GTSRB, we found that the vanilla
SPECTRE algorithm on CIFAR100 can only defend against
ISSBA and LF backdoor attacks. Still, after applying label
smoothing and LS2, the Prm values for SPECTRE substantially
increase. The combination of LS2 and SPECTRE is capable
of defending against all types of attacks.

To extensively validate stability and universality, we per-
formed experiments on CIFAR10 and ImageNet100 using
VGG19-BN, as shown in Table V. Like what we observed
in Table IV, the SPECTRE algorithm with LS2 successfully
defends against all backdoor attacks on both datasets, com-
pared to other defenses.

Moreover, we observe that ANP, I-BAU, AWM, DBD and
D-BR defenses perform well against Adap-Blend and Adap-
Patch attacks. However, these defenses either cannot remove
the backdoor thoroughly or defend against other types of at-

tacks. Besides, the assumptions and methods of these defenses
are different from hidden-separation-based defenses, which is
beyond the scope of this paper. Therefore, we do not delve
into a detailed discussion here.

G. Resistance to Potential Adaptive Attacks.

The previous experiments primarily demonstrated the ef-
fectiveness of LS2 against existing attacks. However, given
our proposed defenses, adversaries may design more powerful
attack strategies to circumvent our methods. The core step
of our method lies in leveraging the difference in AUM
values between poison and benign samples to enhance hidden
separation for the corresponding defenses. A potential adaptive
attack against LS2 could aim to break the assumption that
AUM values for poison and benign samples are different while
attempting to overcome hidden-separation-based defenses. By
doing so, the adaptive attack may potentially evade defense
solutions like SPECTRE+LS2.

In this section, the term “adaptive attack” specifically refers
to the backdoor attack targeting both hidden-separation-based
defenses and LS2, distinguishing it from attacks such as Adap-
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TABLE V
RESULTS OF VGG19-BN ON CIFAR10 AND IMAGENET100.

Dataset Attack↓ % No Defense NC ABL ANP I-BAU AWM DBD D-BR SS AC SCAn SPECTRE SPECTRE
+LS

SPECTRE
+LS2

CIFAR10

BadNets BA 92.95 90.54 84.67 90.52 87.84 88.28 84.13 86.04 88.22 90.43 88.52 88.24 87.84 89.10
ASR 92.67 0.96 0.25 4.30 22.81 8.82 0.00 5.32 80.54 80.67 4.12 30.80 31.58 8.19

Blend BA 93.36 88.64 87.13 90.57 89.30 89.33 77.42 88.82 89.14 89.62 8.12 87.10 86.15 87.38
ASR 90.02 15.47 20.35 22.50 19.56 18.81 0.00 0.00 85.08 91.43 5.11 2.53 2.68 2.53

ISSBA BA 93.19 93.19 86.01 92.69 88.08 88.09 81.92 86.31 90.17 91.36 89.31 89.48 88.64 89.56
ASR 80.81 80.81 0.13 2.08 1.23 1.63 0.10 0.00 60.35 70.72 2.70 0.42 1.45 1.62

LF BA 93.17 89.29 85.42 90.31 89.38 88.91 83.11 85.49 91.04 88.82 90.02 90.41 88.84 88.45
ASR 58.39 4.48 4.43 2.20 6.86 11.50 2.45 0.00 50.16 51.38 4.30 4.04 5.58 4.12

LC BA 93.49 91.10 90.49 86.09 88.03 89.56 80.63 89.12 87.45 90.24 89.38 88.98 89.18 88.22
ASR 99.34 3.23 0.16 5.77 77.50 11.72 0.00 0.00 90.67 96.67 4.25 44.85 10.42 2.68

SIG BA 92.81 92.81 90.67 92.48 88.04 89.13 81.68 86.68 89.45 87.28 89.13 88.24 89.47 87.56
ASR 81.83 81.83 10.37 10.34 41.01 16.46 32.33 4.33 80.65 79.26 7.10 2.55 2.24 2.53

Adap-Blend BA 93.46 89.11 86.82 92.61 84.85 88.47 74.01 88.53 90.41 90.67 88.25 88.22 89.28 89.51
ASR 70.02 12.30 46.18 17.01 11.34 8.34 16.62 18.94 71.14 68.41 67.20 21.28 1.42 2.41

Adap-Patch BA 93.38 91.18 84.71 91.98 89.05 88.28 80.13 88.64 89.64 88.09 89.51 88.18 89.75 88.53
ASR 82.74 1.17 5.26 4.91 1.68 5.37 0.01 0.00 74.21 78.84 76.42 44.21 10.55 4.13

ImageNet
100

BadNets BA 82.70 81.98 75.17 81.97 81.81 81.41 82.06 82.76 80.31 80.26 80.45 81.62 79.94 79.01
ASR 99.98 12.53 21.12 2.53 2.78 0.00 3.10 0.00 16.25 41.32 2.41 1.13 2.98 1.03

Blend BA 82.68 81.43 73.25 81.77 78.75 80.96 82.44 82.40 79.11 81.68 82.94 82.46 78.81 81.04
ASR 95.43 32.01 33.52 14.87 24.91 0.54 22.30 0.00 42.57 89.94 85.58 1.58 1.17 1.11

ISSBA BA 82.66 77.52 70.15 81.50 81.92 81.14 80.38 81.73 82.45 79.80 79.18 79.41 82.89 79.30
ASR 65.42 21.67 63.19 4.23 22.51 1.42 12.32 2.14 46.57 61.50 1.96 4.26 2.39 3.24

LF BA 82.65 76.47 72.15 79.77 78.09 81.55 82.35 79.52 79.37 82.13 81.18 80.05 81.01 82.94
ASR 78.14 47.06 73.62 19.54 2.10 23.60 4.52 19.58 74.79 67.15 5.64 2.24 1.58 1.93

LC BA 82.65 82.02 76.10 80.71 79.25 78.96 78.82 82.54 81.78 79.29 80.44 81.45 81.24 79.21
ASR 54.74 0.42 52.11 0.35 0.12 0.00 4.52 0.00 51.21 51.58 5.25 2.45 0.21 0.22

SIG BA 82.14 79.55 80.18 81.61 79.90 82.40 79.22 79.69 82.88 79.72 79.23 78.77 80.62 82.76
ASR 70.82 0.27 32.62 6.32 10.22 12.34 66.12 11.32 52.42 62.77 50.16 1.56 0.24 0.21

Adap-Blend BA 84.26 81.42 82.09 79.16 78.29 79.04 81.60 80.97 78.74 79.34 81.40 80.49 79.75 81.07
ASR 79.76 32.43 32.92 2.35 21.87 4.23 16.15 4.54 34.11 22.19 21.13 27.13 4.42 4.42

Adap-Patch BA 83.04 79.51 80.67 80.24 80.51 81.41 80.74 82.00 79.89 79.72 82.51 82.51 82.99 82.48
ASR 71.18 0.56 20.13 22.97 2.93 0.84 21.40 2.42 57.32 61.52 60.46 50.23 1.34 1.09

Poisoned 
Samples

Grids without 
Triggers

Grids with 
Triggers

Backdoor 
Samples with 

the Partial 
Triggers

Backdoor 
Samples with 

the Full 
Triggers

Attack
Samples

Fig. 8. In Adap-SIG, we segment a sample into 16 square pieces and
randomly select m of these pieces to which we attach a sinusoidal signal
(the trigger for SIG). While the samples containing the partial triggers are
injected into the dataset to implant the backdoor, those with the full triggers
are used to activate the backdoor during the inference stage. In this example,
the mask rate m is set at 50%. When m equals 100%, the Adap-SIG would
degenerate to the intial SIG attack.

Blend, which are directed solely against hidden-separation-
based defenses. Briefly, our adaptive attack aims to violate
both Assumption 1 and Assumption 2.

1) Adaptive SIG Attack: Inspired by Adap-Blend and Adap-
Patch, we introduce a novel adaptive attack, Adap-SIG, to
challenge LS2 defense. Adap-SIG aims to break the assump-
tion that AUM values for poison and benign samples are
different, while attempting to evade hidden-separation-based
defenses. From Figs. 3f and 4f, we see that the distinguisha-
bility between the AUM of SIG poison samples and clean
samples is not particularly strong. Thus, SIG can be considered
as a challenge to the AUM distinguishability assumption. To
bypass hidden-separation-based defenses, we adopt the trigger
generation strategy used in Adap-Blend to construct the poison
samples for Adap-SIG.

The strategies of Adap-Blend and Adap-Patch encompass
two core steps that can effectively reduce latent separation.
First, to diminish the differences between poisoned and clean
representations, distributed triggers [27] are employed to gen-
erate poison samples. Second, to obscure the correlations
between the trigger and the target class, the attacker injects
only a very small number of poison samples into the training
dataset, and not all trigger-attached samples are re-labeled to
the target class.

Following these approaches, we transform SIG into Adap-
SIG, where the adversary employs distributed triggers and uses
only a small number of poison data to implant the backdoor.
Since SIG belongs to the family of clean label attacks, the
labels of all samples attached with triggers remain to be the
target label. Specifically, we randomly select a percentage m
of the original trigger to generate poisoned data and activate
the backdoor using the entire trigger. An illustration is given
in Fig. 8.

2) Results: We conducted experiments using
PreActResNet-18 on CIFAR10 with poison rate ε = 0.3% and
started the mask rate m at 87.5% and decreased m to 37.5%.
The experimental results are presented in Table VI. Since
a small poison rate is crucial to the success of Adap-Blend
and Adap-Patch in circumventing hidden-separation-based
defenses [11], we also set the poison rate to 0.3% for
Adap-SIG, aligning with the original settings of Adap-Blend
and Adap-Patch.

The results in Table VI demonstrate that as m decreases,
Adap-SIG effectively reduces the Prm for all defenses. More-
over, since a smaller m implies a sparser trigger pattern, we
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TABLE VI
RESULTS OF THE HIDDEN-SEPARATION-BASED DEFENSES AGAINST

ADAP-SIG UNDER VARIOUS MASK RATE m. THE EXPERIMENTS ARE
CONDUCTED ON THE CIFAR10 DATASET WITH PREACTRESNET-18.

m %
No

Def. SS +LS +LS2 AC +LS +LS2 SCAn +LS +LS2 SPECTRE +LS +LS2

87.5%

Prm (-) 13.3 8.7 12.7 0.0 2.0 2.0 65.1 72.1 84.2 92.7 2.0 94.0

BA 93.5 91.4 92.6 91.7 90.4 92.2 91.7 91.8 91.4 91.4 92.5 90.8 91.1

ASR 78.2 62.7 64.8 64.0 77.5 75.4 76.6 17.2 17.2 5.2 0.0 70.9 0.2

75.0%

Prm (-) 26.0 16.0 12.7 0.7 0.7 2.0 62.3 71.3 85.1 89.3 33.3 94.0

BA 93.9 90.8 91.4 89.1 90.1 91.9 92.1 91.1 90.7 90.4 91.1 91.7 90.4

ASR 78.2 46.2 60.0 63.1 76.3 77.5 75.2 14.4 12.3 5.4 2.4 41.3 2.4

62.5%

Prm (-) 22.0 14.0 14.0 2.7 2.0 2.0 40.1 42.7 69.3 74.0 24.7 79.3

BA 93.1 90.3 89.5 91.1 91.4 92.7 91.3 91.4 91.2 91.8 91.4 92.3 91.8

ASR 63.4 36.9 45.3 40.1 60.2 60.7 60.7 20.6 24.1 9.4 3.6 32.1 2.5

50.0%

Prm (-) 19.3 17.3 13.3 1.3 8.0 2.7 32.4 31.7 62.4 46.7 12.7 60.0

BA 94.0 90.2 89.7 92.4 89.5 90.4 90.4 90.4 90.7 90.3 90.2 90.7 90.4

ASR 41.7 36.8 36.7 35.1 37.9 36.3 37.9 24.9 23.5 10.3 17.2 36.3 12.5

37.5%

Prm (-) 16.0 6.7 4.7 4.0 0.7 2.0 20.7 25.3 44.7 28.7 13.3 48.7

BA 93.9 90.2 90.7 90.4 90.2 90.1 89.5 90.1 90.1 89.1 89.5 90.2 89.3

ASR 29.1 20.7 24.1 23.3 21.3 22.5 23.0 21.4 23.6 14.2 18.5 21.1 13.5

observe that a smaller m leads to a smaller initial ASR. When
m ≤ 50%, Adap-SIG ultimately maintains an ASR of over
10% against all defenses, which can be considered successful
adaptive attack settings. Among all results, LS2 effectively
enhances the performance of SCAn and SPECTRE against
Adap-SIG, and SPECTRE+LS2 achieves the highest Prm while
reducing the ASR to below 14%.

To further investigate the defense performance of various
defenses against Adap-SIG under different poison rates, we
conducted additional experiments on CIFAR10. To ensure
Adap-SIG maintains sufficient ASR and bypasses defenses,
we fixed the mask rate at 50% and performed robustness
validation at poison rates of 1% and 5%. The results are shown
in Table VII.

It can be observed that when the poison rate is 1%, Adap-
SIG achieves an initial ASR of 83.7%. Under this setting,
Adap-SIG maintains an ASR of over 35% when defending
against SS, AC, and SCAn, but its attack success rate against
SPECTRE is relatively poor. When the poison rate increases
to 5%, although the initial ASR of Adap-SIG rises to 94.7%,
the attack success rates against SS, SCAn, and SPECTRE
defenses drop to below 17%, with the attack success rate
against SPECTRE as low as 4.4%. Thus, a higher poison
rate can even negatively impact the stealthiness of Adap-
SIG attacks. Furthermore, LS2 can effectively enhance the
defense performance of SS, SCAn and SPECTRE, and both
SCAn+LS2 and SPECTRE+LS2 reduce Adap-SIG’s ASR to
below 10% in both settings. Thus, a higher poison rate can
even negatively impact the stealthiness of Adap-SIG attacks.
Furthermore, LS2 can effectively enhance the defense perfor-
mance of SS, SCAn, and SPECTRE. Both SCAn+LS2 and
SPECTRE+LS2 reduce Adap-SIG’s ASR to below 10% under
two poison rate settings.

TABLE VII
RESULTS OF THE HIDDEN-SEPARATION-BASED DEFENSES AGAINST

ADAP-SIG UNDER POISON RATE 1% AND 5%. THE EXPERIMENTS ARE
CONDUCTED ON THE CIFAR10 DATASET WITH MASK RATE m = 50%.

ε %
No

Def. SS +LS +LS2 AC +LS +LS2 SCAn +LS +LS2 SPECTRE +LS +LS2

1.0%

Prm (-) 74.2 80.2 90.2 50.2 52.8 64.2 80.2 90.8 92.4 90.2 96.4 97.2

BA 92.5 92.2 91.1 91.9 89.9 89.7 90.7 90.2 90.6 90.5 90.9 91.0 90.9

ASR 83.7 36.2 34.7 12.1 40.7 37.3 35.4 35.9 10.5 8.6 11.8 4.3 4.7

5.0%

Prm (-) 95.6 97.8 98.8 80.4 82.7 84.2 95.4 96.6 99.0 98.4 99.2 99.7

BA 92.4 92.1 91.4 91.5 90.1 89.8 90.1 90.4 90.4 90.4 91.0 90.3 90.2

ASR 94.7 15.2 5.8 5.4 69.8 70.6 71.1 16.1 18.4 4.3 4.4 3.3 3.3

H. Robustness to Label Noise

The main focus of this paper is to improve the distinction
between poisoned and clean samples, enhancing the effective-
ness of latent separation-based defenses. However, LS2 can
also be viewed as an adaptive label smoothing strategy, and
label smoothing and its variants have been widely used to
mitigate the impact of label noise. Thus, in this section, I will
explore the robustness of LS2 against label noise to further
analyze its potential effects.

Following previous studies on label noise, we use ResNet-
34 [50] as the base model in our experiments. Results from
other comparison methods are sourced from the literature, as
reported by Wei et al. [43]. Consistent with these setups, we
use the SGD training method and train for 200 epochs on each
dataset, with LS2 default parameters α = 0.1 and β = 0.2.

TABLE VIII
TEST ACCURACY ON THE CLEAN TEST SET FOR MODELS TRAINED ON

CIFAR WITH NOISY LABELS UNDER DIFFERENT NOISE RATE.

Method CIFAR10 CIFAR100

Noise Rate (%) → 20 40 60 40 60

Cross-Entropy 86.45 82.72 74.04 48.20 38.27

FLC 84.85 84.98 73.97 53.04 41.59

Label Smoothing 90.24 83.78 75.01 55.17 41.63

Negative Label Smoothing 89.05 84.85 77.82 58.47 46.58
LS2 89.40 83.62 75.93 55.21 42.52

TABLE IX
TEST ACCURACY ON THE CLEAN TEST SET FOR MODELS TRAINED ON

CLOTHING 1M AND CIFAR-N WITH NOISY LABELS.

Method Clothing
1M

CIFAR-10N
Aggre

CIFAR-10N
Rand1

CIFAR-10N
Worse

CIFAR-100N
Fine

CE 68.94 87.77 85.02 77.69 55.50

FLC 69.84 88.24 86.88 79.79 57.01

LS 73.44 91.57 89.80 82.76 55.84

NLS 74.24 91.97 90.29 82.99 58.59
LS2 73.31 91.62 90.14 82.67 57.43

In Table VIII, we compare Cross-Entropy (CE) and LS2

with methods for mitigating label noise, such as FLC [54],
label smoothing (LS) [40], and Negative Label Smoothing
(NLS) [43] on synthetic CIFAR10 and CIFAR100 datasets.
In the synthetic data generation, we randomly select a portion
of the training samples and replace their labels with randomly
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chosen incorrect labels. In Table IX, we report experiments on
two real-world human noise benchmarks, Clothing-1M [55]
and CIFAR-N [56]. The results show that LS2 provides strong
robustness against label noise. While it is slightly weaker than
NLS, its performance is comparable to that of label smoothing.

I. Generalization and Robustness to Adversarial Attacks

Label smoothing is also known to improve the generaliza-
tion of models and enhance their robustness to adversarial
attacks [57]. To further validate the generalization and robust-
ness to adversarial attacks of LS2, we conducted experiments
on the CIFAR10 dataset using the ResNet-34 model. We
choose PGD [58] using as the adversarial attack method and
set the L∞ perturbation size to 8/255 and 16/255. We fix the
pertubations steps to 20 and the step size to 2/255.

Fig. 9 presents the results of the LS and LS2with different
smoothing parameters against PGD-20 attacks. For LS2, we
fix the warmup epoch T at 10. We can observe that the test
accuracy of label smoothing is slightly higher than that of LS2.
Morever, a large β can lead to a decrease in the test accuracy of
LS2. For the robustness to adversarial attacks, setting β from
0.2 to 0.5 can greatly improve the robustness of LS2. However,
the best robust performance of LS2is still lower than that of
label smoothing under both attack settings.
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Fig. 9. Effect of LS and LS2 against PGD adversarial example, CIFAR10.

VI. DISCUSSION AND LIMITATION

In this paper, building upon the analysis of the impact
of label smoothing on latent representations, we show that
our proposed algorithm could enhance the distinguishability
between poison and benign samples. Current research on
backdoor attacks and label smoothing primarily focuses on
image classification tasks. Therefore, in this paper, we mainly
conduct experimental validation in the image classification
domain. As shown in Equation (8), our method (LS2) is
essentially a variant of the Cross-Entropy (CE) loss, which
suggests it can be extended to classification tasks utilizing
CE in other fields, such as sentiment analysis in natural
language processing (NLP) [59] and disease diagnosis in
medical classification [60].

However, our smoothing method relies on the distribution
difference of AUM values for poison and benign samples.
While AUM serves as a valuable indicator, the exploration for
more discerning characteristics remains a promising avenue.
Further research could reveal more effective strategies for

detecting poisoned samples within malicious datasets. Ad-
ditionally, designing particular training approaches to pro-
mote hidden separation or other discriminative characteristics
warrants consideration for future defenses against backdoor
threats.

VII. CONCLUSION

In this paper, we have established a connection between
label smoothing and backdoor poisoning attacks. Leveraging
the influence of label smoothing on latent representations,
we have devised the LS2 training strategy. Our experimental
results have demonstrated that both label smoothing and our
training approach can bolster the discernibility between poison
and benign samples, ultimately enhancing the efficacy of
hidden-separation-based defenses, covering AC, SS, SCAn
and SPECTRE. However, the effects of label smoothing may
exhibit variability, and its impact on filtering poisoned data
may only sometimes be positive. When combined with LS2,
the SPECTRE algorithm can eliminate the threat of various
backdoor attacks, including powerful adaptive attacks.

APPENDIX

A. Proof of Theorem 1

Proof. For brevity, we denote qk(x) = exp{〈Wk,f(x)〉},
and

Q(x) =

K∑
j=1

exp{F (x)j} =

K∑
j=1

exp{〈Wj ,f(x)〉}. (12)

Thus, we get pk(x) = qk(x)/Q(x). Then, we can reform
label smoothing risk Equation (3) to

R(F ;D)LS,α

= −E(x,y)∈D

[
(1− α) log py(x) +

α

K

K∑
k=1

log pk(x)

]

= −E(x,y)∈D

[
log py(x) +

α

K

K∑
k=1

(log pk(x)− log py(x))

]

= −E(x,y)∈D

[
log py(x) +

α

K

K∑
k=1

(
log

qk(x)

Q(x)
− log

qy(x)

Q(x)

)]

= −E(x,y)∈D

[
log py(x) +

α

K

K∑
k=1

(
log qk(x)− log qy(x)

)]

= −E(x,y)∈D log py(x)− α

K
E(x,y)∈D

K∑
k=1

〈Wk −Wy,f(x)〉

= R(F ;D) +
α

K
E(x,y)∈D

K∑
k=1

〈Wy −Wk,f(x)〉
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S.I. SOCIAL IMPACT

Training a well-performing deep learning network often
involves the common practice of collecting substantial datasets
from diverse sources. However, some untrustworthy sources
may exploit this demand by injecting poisoned data into
the collection, aiming to implant backdoors into the model.
To ensure model security, the most direct approach is to
filter out poisoned data from the dataset as much as pos-
sible, thereby eliminating the backdoor threat at its source.
The hidden-separation-based defense is an example of such
filtering algorithms. We propose the LS2 training method
with minimal modifications to effectively enhance existing
hidden-separation-based defenses. Since LS2 can essentially be
viewed as a training strategy to prevent overfitting, our method
holds the potential to enhance the model’s generalization
capabilities. We hope our work can pave the way for more
advanced defenses against backdoor threats in the future.

S.II. IMPLEMENTATIONS DETAILS

1) Training Settings: Our deep learning training algorithm
is implemented using PyTorch. Throughout all training pro-
cesses, we employed the stochastic gradient descent (SGD)
optimization method with a batch size of 128. We set the initial
learning rate to 0.01 and decayed it using the cosine annealing
strategy [S1]. For the CIFAR-10 and CIFAR-100 datasets, we
trained for a total of 100 epochs. For the GTSRB dataset,
we trained for 50 epochs. In the case of the ImageNet100
dataset, we trained for 200 epochs. All experiments were
run on one Ubuntu 18.04 server equipped with two NVIDIA
RTX A4000 GPUs. Our implementation is mainly based on
BackdoorBench [S2].

2) Attacks Settings: On the CIFAR10, CIFAR100 and Im-
ageNet100 datasets, the target label for all backdoor attacks is
class 0, corresponding to the specific class names “airplane”,
“apple” and “tench” . On the GTSRB dataset, the target label
for all backdoor attacks is class 4, corresponding to the specific
class name “70-speed”.

In Section V, for CIFAR-10, all attacks except for BadNet
and ISSBA have a poison rate of ε = 0.3% (150 poison
samples). Since the ASR values for BadNet and ISSBA at
ε = 0.003 are below 10%, they are not considered successful
backdoor attacks. Therefore, we set the poison rate for these
two attacks to ε = 1% (500 poison samples). In the case of

(a) Benign Data (b) BadNets (c) Blend

(d) ISSBA (e) LF

train test

(f) Adap-Blend

train test

(g) Adap-Patch
Fig. S1. Examples of poisoned data generated by classical and adaptive label-
flipping attacks on CIFAR10.

GTSRB, the poison rate for all attacks is ε = 0.4% (157 poison
samples). Due to the low success rates of most backdoor
attacks on the CIFAR-100 dataset when the poisoning rate
ε is set to a low value, we choose to use ε = 1% (500
poison samples). However, CIFAR-100 has only 500 training
samples per class. Therefore, at this poison rate, all data under
the target label of clean label attacks would be replaced with
poison samples, which does not align with the basic premise of
backdoor attacks. Additionally, both LC and SIG attacks have
poor attack performance at lower poison rates, with success
rates below 40%. Therefore, we opt not to conduct experiments
with clean label attacks on CIFAR-100.

The comprehensive implementation details for each back-
door attack are as follows: The examples of poisoned data
generated by various label-flipping attacks on CIFAR10 and
ImageNet100 are presented in Figures S1 and S2 As shown

https://orcid.org/0009-0001-3787-3150
https://orcid.org/0000-0002-8386-0131
https://orcid.org/0000-0002-6494-775X
https://orcid.org/0009-0006-6839-9355
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(a) Benign Data (b) BadNets (c) Blend

(d) ISSBA (e) LF

train test

(f) Adap-Blend

train test

(g) Adap-Patch
Fig. S2. Examples of poisoned data generated by classical and adaptive label-
flipping attacks on ImageNet100.

in Figure S1, the classical label-flipping attacks first injects
triggers into samples and then relabels them as the target
class “airplane”. BadNets attacks [S3] employs a 3× 3 white
square placed at the bottom right corner as the trigger pattern.
Blended attack [S4] poisons the data by introducing a Hello
Kitty image trigger. We implement the blended injection
strategy, denoted as αt+ (1− α)x, to incorporate the trigger
t into the benign sample x with a value of α = 0.2.
ISSBA [S5] utilizes the StegaStemp algorithm [S6] to generate
specific triggers for poison samples across various classes.
LF [S7] employs frequency domain analysis and optimization
algorithms to create poison samples.

(a) Benign Data (b) LC (c) SIG
Fig. S3. Examples of poisoned data generated by clean label attacks on
CIFAR10.

(a) Benign Data (b) LC (c) SIG
Fig. S4. Examples of poisoned data generated by clean label attacks on
ImageNet100.

Adaptive Attacks [S8] represent an enhanced iteration of the
previously mentioned attacks. In addition to injecting poisoned
data into the dataset, this category of attacks also inserts
payload data. The labels of payload data are not modified,
but they are embedded with triggers. In our experiments,
we use an equal number of payload data points as poison
samples. As illustrated in Figs. 1f and 1g, Adap-Blend employs
the same trigger, “Hello Kitty”, as Blend to contaminate the
samples. However, when generating the poisoned data, Adap-
Blend randomly selects a portion of the trigger for conducting
the poisoning attack. During the testing phase, Adap-Blend
activates the backdoor using the entire trigger. Similarly, Adap-
Patch utilizes a set of four triggers to produce poisoned data.
Each individual poisoned training sample is embedded with
a single trigger. Nevertheless, during the attack phase, two
triggers are employed to induce the neural network to output
the target label.

As shown in Figures S3 and S4, the clean label adversary
poisons samples belonging to the target class only. LC attacks
[S9] utilize a 3× 3 checkboard pattern positioned in the four
corners as the trigger. To establish a link between the trigger
and the target label, LC attacks initially employ the Projection
Gradient Descent (PGD) method to introduce adversarial per-
turbations to the images before incorporating the trigger. On
the other hand, SIG attacks [S10] utilize a sinusoidal signal
that is seamlessly integrated into the image as the trigger.

Defenses Settings: For defenses requiring clean samples,
including NC, ANP, AWM, and I-BAU, we allocate 5% of
the clean training samples from each dataset to the defender.
For any other specific settings not mentioned below, we adhere
to the default settings outlined in their publications or public
implementation.

As we employed the original mathematical symbols from
each publications, please be aware that some of the mathe-
matical symbols and terms used below may conflict with each
other or with certain expressions in our paper. All symbols
and terms below correspond only to the parameters in their
respective papers.

• NC [S11]: We set the threshold of the Anomaly Index
at 2 for all the datasets. For models with an Anomaly
Index higher than 2 (marked as attacked), we conduct
the unlearning procedure for 40 epochs, utilizing 5% of
the training data and applying the reversed trigger to 20%
of these samples.

• ABL [S12]: During training, for CIFAR10, CIFAR100,
and GTSRB, we set the number of early tuning epochs
Tte = 20, the fine-tuning epochs Tfe = 60, and the
unlearning epochs Tue = 20. For ImageNet100, we set
Tte = 40, Tfe = 120, and Tue = 4. In the tuning stage,
we set the isolation rate p = 0.01, and the loss threshold
γ = 0.5. And the unlearning rate is set to be 5e−4.

• ANP [S13]: We set the learning rate to 0.2 for optimizing
the neuron mask with SGD. After optimization, neurons
with a mask value smaller than the threshold of 0.2 are
pruned. Additionally, we set the tradeoff coefficient α to
0.2 and the perturbation budget ε to 0.4 for a total of
2000 iterations.
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• AWM [S14]: Although AWM is an improved version
of ANP, there are significant differences in the default
parameters between ANP and AWM, as addressed in
AWM. The outer optimization is conducted with Adam
and a learning rate of 0.001, while the inner optimization
is conducted with SGD using a learning rate of 0.01.
We perform 10 steps of outer optimization after every
10 steps of inner optimization in each epoch. We use
the default hyperparameter settings: α = 0.9, β = 0.1,
γ = 1e−8, and τ = 1000.

• I-BAU [S15]: We follow the default settings provided in
the public implementation of I-BAU. We use Adam with
a learning rate of 1e−3 to optimize the outer loop. And,
we set the maximum number of unlearning rounds to 5
and the maximum number of fixed-point iterations to 5.

• DBD [S16]: For all datasets, we performed self-
supervised learning for 100 epochs. Moreover, we trained
the connected layers for 10 epochs using SCE loss for
warm-up. We set the filtering rate α to 50% in all cases,
and the temperature of the NT-Xent loss was set to 0.5.

• D-BR [S17]: During sample distinguishment, we set et =
2, ef = 10, αc = 0.2, and αp = 0.05. After training the
backdoored model for 200 epochs, we spend 20 epochs
to perform the fine-tuning and unlearning procedures.

• AC [S18]: Following the settings in SPECTRE [S19],
we allow the defenders of AC, SS, and SPECTRE to
be equipped with an oracle that has knowledge of the
number of poison samples (ε · n). Before performing K-
means, we reduce the dimensionality of representations
to 100 using PCA.

• SS [S20]: We make the defender remove 1.5εn suspected
samples for each class.

• SPECTRE [S19]: We remove 1.5εn suspected samples
only from the class with the highest QUE-score. We set
the base value of α to 4 for assessing the outlier score
τ . Moreover, we set kmax = 100 to find out the effective
dimension k for computing the outlier score.

S.III. ADDITIONAL T-SNE VISUALIZATION

In Figure S5, we plot the T-SNE visualization for samples
generated from other backdoor attacks on CIFAR10. When we
train the model with vanilla cross-entropy, there is a visible
separation between poison and benign samples only for ISSBA
Blend and SIG attacks. When extracting the representation
from models trained with label smoothing, we get better latent
separability except for LF attacks. Moreover, label smoothing
also tightens the cluster of poison samples in latent space. LS2

has a similar effect for poison and benign separation as label
smoothing but boosts the hidden separation for all attacks.

S.IV. AUM VALUES

In this section, we first present the AUM values associated
with various attacks, followed by a detailed discussion on the
relationship between these AUM values and cross-entropy.

1) AUM Values on More Datasets: Figures 6-9 give the
comprehensive AUM values and the corresponding density
on GTSRB, and CIFAR100. On GTSRB and CIFAR100, we

can obtain similar observations as CIFAR10. However, on tiny
datasets like GTSRB, the AUM values of poisoned samples
increase more rapidly. Meanwhile, as shown in Figure S6f, in
the later stages of training, the AUM values of SIG poison
samples are almost identical to the benign ones. There is
disparity only before the 10th epoch. For such tiny datasets,
the epoch T for re-smoothing can be set to a lower value, for
example, T = 2.

2) AUM versus Cross-entropy Loss: In this paper, we utilize
AUM as a metric to assess the “learning speed” of the model
for each sample. As discussed earlier, we observe that most
poison samples, except for SIG, exhibit a “Hard-to-learn”
pattern. When comparing the results of hidden-separation-
based defenses with other types of defenses, we also observe
that this “Hard-to-learn” phenomenon may contrast with the
experimental observations obtained in the ABL paper [S12].

In ABL, cross-entropy loss is employed to measure the
“learning speed” for each sample, which only involves the
model’s outputs corresponding to the labels annotated in the
dataset. The authors of ABL found that the cross-entropy
training loss on the poison portion drops abruptly in the
early epochs of training. Such phenomenon suggests that the
backdoor samples are much easier to learn compared to the
clean ones, which seems to contradict the observation in our
paper.

To better understand this conflict, it’s essential to note
the differences between AUM and the cross-entropy loss
values. Unlike cross-entropy loss, AUM considers not only
the model’s outputs corresponding to the data labels but also
takes into account the runner-up outputs of the model (see
(5)). For common poison samples, the model’s probability
output is highest for the target class, leading to a small loss
value, as observed in ABL. For samples from label-flipping
backdoor attacks, the model outputs a large probability for
the original classes of those samples, akin to the noisy label
problem [S21], resulting in small AUM values. Furthermore,
samples from clean label backdoor attacks, which do not
undergo label change but have their original patterns perturbed,
tend to exhibit higher AUM values.

S.V. ADDITIONAL DEFENSE RESULTS

Full numerical results of PreActResNet-18 and VGG19-BN
for various defenses against backdoor attacks are presented in
Tables SI-IV.

In line with Adap-Blend and Adap-Patch, all attacks in
our study were conducted with a low poison rate, as we
discussed in Section S.II. Consequently, some of the ASR
values of attacks may be lower than those reported in their
publications. Furthermore, previous studies [S8, S19] have
indicated that defending against backdoor attacks is more
challenging at lower poison rates than at higher ones. To
address this challenge, we opted to conduct our experiments
under such conditions.

According to our definition, Prm is actually the recall metric
in traditional machine learning. Following SPECTRE and SS,
here, we only report the recall (Prm). Moreover, as mentioned
in Section S.II, please note that the SS and SPECTRE al-
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(a) Badnet (b) Blend (c) ISSBA (d) LF (e) LC (f) SIG

(g) Badnet + LS (h) Blend + LS (i) ISSBA + LS (j) LF+ LS (k) LC + LS (l) SIG + LS

(m) Badnet + LS2 (n) Blend + LS2 (o) ISSBA + LS2 (p) LF+ LS2 (q) LC + LS2 (r) SIG + LS2

Fig. S5. T-SNE visualization of penultimate layer’s activations of backdoor attacks BadNets, Blend, ISSBA and SIG on CIFAR10 with different label
smoothing settings. The representations in the first row are extracted from models trained with vanilla cross-entropy.

gorithms filter out a fixed number of samples as the poison
samples, which allows us to derive precision from recall.

1) Results of PreActResNet-18: From Table SI, we can
observe that on CIFAR10, label smoothing and LS2 primarily
enhance the effectiveness of SS and SPECTRE defenses.
These two training strategies have almost no enhancing effect
on AC defense. In the presence of very few poisoned samples,
LS2 allows SS defense to defend against attacks such as
BadNets, ISSBA, and adaptive attacks that it previously could
not handle. Except for ISSBA and LC attacks, LS2 boosts the
Prm values of SPECTRE defense to their highest in most cases.

On the GTSRB dataset, label smoothing and LS2 aid in
improving the Prm values for AC, SS, and SPECTRE defenses,
as presented in Table SII. These two methods enable all three
defenses to eliminate the threat of adaptive attacks. However,
their effect on AC and SS defense is not stable for other
attacks, and they cannot guarantee comprehensive defense
against all types of backdoor attacks.

The results for CIFAR100 are shown in Table SIII. Similar
to CIFAR10, we observe that label smoothing and LS2 primar-
ily enhance the effectiveness of SS and SPECTRE defenses.
However, it is worth noting that their impact on the SPECTRE
algorithm is particularly significant. In contrast to CIFAR10
and GTSRB, we found that the vanilla SPECTRE algorithm on
CIFAR100 can only defend against ISSBA and LF backdoor
attacks. Still, after applying label smoothing and LS2, the Prm
values for SPECTRE substantially increase. The combination
of LS2 and SPECTRE is capable of defending against all types
of attacks.
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Fig. S6. The comparison of AUM value between benign and poison samples of PreActResNet-18 during training on GTSRB.
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Fig. S7. The comparison of AUM value density between benign and poison samples of PreActResNet-18 at 2nd epoch on GTSRB.
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Fig. S8. The comparison of AUM value between benign and poison samples of PreActResNet-18 during training on CIFAR100.
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Fig. S9. The comparison of AUM value density between benign and poison samples of PreActResNet-18 at 10th epoch on CIFAR100.
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TABLE SI
POISON SAMPLES REMOVAL PERFORMANCE COMPARISON OF PREACTRESNET-18 WITH VARIOUS HIDDEN SEPARABILITY BASED DEFENSES AGAINST

ATTACKS ON CIFAR10.

Attacks → (%) BadNets Blend ISSBA LF LC SIG A-Blend A-Patch

No Defense ASR 88.7 86.1 71.2 69.8 87.1 77.5 71.9 78.8

SS Prm 25.6 8.6 12.6 0.0 18.6 9.3 0.7 5.3
ASR 43.1 80.2 69.4 69.9 68.1 67.5 71.8 77.4

SS
+ LS

Prm 50.0 20.0 31.2 6 50.6 9.3 33.3 40 .0
ASR 10.5 71.4 36.1 68.1 20.1 68.3 52.5 44.6

SS

+ LS2
Prm 71.8 5.0 78.4 5.3 29.3 6.0 72.7 63.3
ASR 4.6 86.2 2.4 68.2 45.4 69.4 2.7 5.1

AC Prm 11.8 3.3 11.8 0 0 0.7 0.0 0.7
ASR 45.4 84.1 69.1 69.1 86.9 73.5 71.5 77.2

AC
+ LS

Prm 15.0 5.3 6.6 2.6 6.6 1.2 3.3 1.3
ASR 45.5 84.4 70.2 68.8 86.1 73.2 70.7 77.6

AC

+ LS2
Prm 8.2 2.0 8.0 4.0 0.0 2.7 0.0 7.3
ASR 47.3 84.6 69.3 68.9 86.9 73.1 71.2 71.3

SCAn Prm 89.8 82.7 86.6 85.6 51.3 74.0 11.3 6.0
ASR 1.6 2.5 1.2 4.3 12.3 7.1 70.2 74.6

SCAn
+ LS

Prm 87.3 87.3 82.7 82.7 54.0 80.0 13.3 32.0
ASR 0.4 3.2 5.7 1.4 17.5 4.4 69.6 72.3

SCAn

+ LS2
Prm 90.0 88.0 91.3 86.6 74.0 92.0 72.7 54.7
ASR 0.6 1.5 2.4 1.1 8.6 1.2 5.1 13.5

SPECTRE Prm 85.4 74.0 98.6 83.3 100.0 100.0 2.6 4
ASR 4.6 7.1 2.1 5.1 0.1 0.5 71.2 77.2

SPECTRE
+ LS

Prm 90.0 84.7 97.2 18.6 98.6 2.6 66.7 78.0
ASR 2.4 2.5 2.3 40.2 0.1 73.3 13.7 4.3

SPECTRE

+ LS2
Prm 89.8 86.7 97.2 84.6 97.3 100.0 82.0 80.0
ASR 3.2 2.1 3.1 2.4 0.1 0.5 2.4 2.5
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TABLE SII
POISON SAMPLES REMOVAL PERFORMANCE COMPARISON WITH OF PREACTRESNET-18 VARIOUS HIDDEN SEPARABILITY BASED DEFENSES AGAINST

ATTACKS ON GTSRB.

Attacks → (%) BadNets Blend ISSBA LF LC SIG A-Blend A-Patch

No Defense ASR 73.81 89.2 71.8 90.3 53.2 58.3 78.0 55.3

SS Prm 81.5 71.3 72.6 37.6 23.6 33.8 48.4 26.8
ASR 4.7 23.8 7.9 81.5 47.7 40.3 66.3 49.9

SS
+ LS

Prm 62.4 70.1 56.1 60.5 29.3 36.3 89.2 84.1
ASR 11.3 21.9 16.7 24.2 46.2 36.2 6.2 3.4

SS

+ LS2
Prm 91.1 63.1 63.1 45.2 42.7 33.8 94.3 96.6
ASR 1.24 24.7 10.4 80.1 15.4 40.3 4.3 2.5

AC Prm 75.8 69.4 75.8 29.3 8.3 7.0 45.9 29.3
ASR 6.5 25.5 7.7 84.2 52.8 58.1 69.8 47.1

AC
+ LS

Prm 87.9 80.9 47.8 38.2 6.4 14.0 84.7 66.9
ASR 1.4 6.7 23.1 82.5 51.1 52.3 4.8 14.6

AC

+ LS2
Prm 87.9 65.6 64.3 41.4 19.10 5.1 86.6 86.0
ASR 1.4 25.1 10.7 82.3 47.6 58.1 4.4 3.6

SCAn Prm 82.0 69.3 79.0 75.8 75.3 52.0 54.0 34.0
ASR 1.5 29.5 2.7 1.3 1.3 19.7 60.5 42.7

SCAn
+ LS

Prm 89.3 82.7 80.2 73.8 75.3 44.2 51.2 37.3
ASR 0.7 7.4 1.6 4.7 1.3 23.1 61.1 44.1

SCAn

+ LS2
Prm 93.0 91.1 84.7 84.7 86.7 70.7 81.2 61.3
ASR 1.0 2.5 4.4 0.8 2.0 5.7 3.4 17.3

SPECTRE Prm 93.0 89.2 91.1 98.1 73.9 84.8 42.7 31.2
ASR 0.1 7.5 1.3 0.4 8.8 4.7 44.7 35.6

SPECTRE
+ LS

Prm 96.2 98.7 98.1 100.0 82.2 68.2 92.4 97.5
ASR 0.2 2.5 1.1 0.5 1.8 6.5 4.5 2.6

SPECTRE

+ LS2
Prm 95.5 94.9 95.5 99.4 82.8 79.6 96.8 98.1
ASR 0.1 2.5 0.5 0.4 1.8 4.55 4.4 2.5
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TABLE SIII
POISON SAMPLES REMOVAL PERFORMANCE COMPARISON OF PREACTRESNET-18 WITH VARIOUS HIDDEN SEPARABILITY BASED DEFENSES AGAINST

ATTACKS ON CIFAR100.

Attacks → (%) BadNets Blend ISSBA LF A-Blend A-Patch

No Defense ASR 71.2 90.8 55.8 58.8 88.1 91.7

SS Prm 10.0 10.2 51.6 53.6 38.6 42.5
ASR 71.0 88.4 2.7 17.3 44.7 50.2

SS
+ LS

Prm 48.2 56.0 54.8 57.4 50.8 47.6
ASR 20.1 80.4 3.4 13.1 46.1 49.0

SS

+ LS2
Prm 44.8 57.8 51.0 48.2 47.4 48.6
ASR 23.1 79.3 2.7 17.3 46.1 47.6

AC Prm 84.0 10.8 3.2 80.2 4.8 9.0
ASR 2.1 88.8 53.4 2.7 88.3 90.3

AC
+ LS

Prm 73.2 10.2 6.6 14.8 7.4 26.6
ASR 5.1 87.9 50.3 57.3 87.7 80.4

AC

+ LS2
Prm 79.8 24.4 6.0 10.8 6.8 9.0
ASR 2.3 85.1 50.6 57.4 87.6 89.9

SCAn Prm 84.0 11.0 73.6 77.0 50.4 44.5
ASR 4.7 84.6 4.2 1.6 44.1 44.0

SCAn
+ LS

Prm 81.8 21.8 82.4 80.0 69.2 64.2
ASR 2.7 85.2 1.1 0.7 6.2 6.2

SCAn

+ LS2
Prm 83.2 60.0 83.4 79.2 81.6 82.4
ASR 1.5 71.2 1.2 2.7 4.1 0.4

SPECTRE Prm 10.0 8.2 70.4 76.2 44.8 45.2
ASR 70.2 88.6 0.4 2.9 46.8 45.5

SPECTRE
+ LS

Prm 80.8 58.8 85.4 72.4 73.8 70.8
ASR 2.3 78.2 0.1 3.1 6.3 0.1

SPECTRE

+ LS2
Prm 80.4 77.8 86.4 78.6 82.6 84.8
ASR 2.3 6.1 0.1 2.9 6.2 0.0
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